0
Corrigé

R2019b linux problem

Michal Kvasnicka il y a 2 mois mis à jour il y a 2 mois 5

On R201b (Linux Mint 19.2) is the following problem:

>> mp.Test
mp.Digits() : <- success
mp.GuardDigits() : <- success
double() : <- success
int8() : <- success
uint8() : <- success
int16() : <- success
uint16() : <- success
int32() : <- success
uint32() : <- success
int64() : <- success
uint64() : <- success
colon() : <- success
plus() : <- success
minus() : <- success
times() : <- success
mtimes() : <- success
rdivide() : <- success
ldivide() : <- success
mldivide() : <- success
mrdivide() : <- success
mpower() : <- success
power() : <- success
realpow() : <- success
transpose() : <- success
ctranspose() : <- success
uminus() : <- success
uplus() : <- success
sin() : <- success
cos() : <- success
tan() : <- success
sec() : <- success
csc() : <- success
cot() : <- success
acos() : <- success
asin() : <- success
atan() : <- success
acot() : <- success
atan2() : <- success
hypot() : <- success
cosh() : <- success
sinh() : <- success
tanh() : <- success
sech() : <- success
csch() : <- success
coth() : <- success
acosh() : <- success
asinh() : <- success
atanh() : <- success
acoth() : <- success
asech() : <- success
acsch() : <- success
exp() : <- success
expm1() : <- success
log() : <- success
log10() : <- success
log1p() : <- success
log2() : <- success
nextpow2() : <- success
pow2() : <- success
sqrt() : <- success
reallog() : <- success
realsqrt() : <- success
nthroot() : <- success
pow2(F,E) : <- success
min(), max() : <- success
prod(matrix) : <- success
prod(vector) : <- success
sum(matrix) : <- success
sum(vector) : <- success
cumsum(matrix) : <- success
cumsum(vector) : <- success
cumprod(matrix) : <- success
cumprod(vector) : <- success
dot() : <- success
cross() : 2 <- fail
3 <- fail
9 <- fail
10 <- fail
<- success
svd() : <- success
qr() : <- success
lu(square) : <- success
lu(rect) : <- success
pinv() : <- success
null() : <- success
balance() : <- success
eig() : <- success
qz() : <- success
hess() : <- success
chol() : <- success
schur() : <- success
ordschur() : <- success
rank() : <- success
trace() : <- success
det() : <- success
inv() : <- success
sort(real) : <- success
sort(complex) : <- success
find() : <- success
<,<=,>,>=,==,~= : <- success
and,or,not,xor : <- success
all() : <- success
any() : <- success
isinf() : <- success
isnan() : <- success
isfinite() : <- success
isreal() : <- success
abs() : <- success
sign() : <- success
conj() : <- success
angle() : <- success
imag() : <- success
real() : <- success
complex() : <- success
ceil() : <- success
fix() : <- success
floor() : <- success
idivide() : <- success
round() : <- success
rem() : <- success
mod() : <- success
tril(matrix) : <- success
tril(vector) : <- success
triu(matrix) : <- success
triu(vector) : <- success
diag(matrix) : <- success
diag(vector) : <- success
norm(matrix) : <- success
norm(vector) : <- success
cond() : <- success
rcond() : <- success
factorial() : <- success
mean() : <- success
std() : <- success
erf() : <- success
erfc() : <- success
erfi() : <- success
FresnelS() : <- success
FresnelC() : <- success
gammaln() : <- success
gamma() : <- success
gammainc() : <- success
psi() : <- success
zeta() : <- success
eint() : <- success
logint() : <- success
cosint() : <- success
sinint() : <- success
besselj() : <- success
bessely() : <- success
besseli() : <- success
besselk() : <- success
besselh() : <- success
hypergeom() : <- success
KummerM() : <- success
KummerU() : <- success
expm() : <- success
logm() : <- success
sqrtm() : <- success
sinm() : <- success
cosm() : <- success
sinhm() : <- success
coshm() : <- success
fft : <- success
ifft : <- success
fft2 : <- success
ifft2 : <- success

I mean Matlab R2019b ... sorry for typo

À l'étude

Looking into this.

Thank you!

TMW changed the functionality of "cross" function in R2019b for complex vectors.

< R1019b:

    % Calculate cross product
c = [a(2).*b(3)-a(3).*b(2);
a(3).*b(1)-a(1).*b(3);
a(1).*b(2)-a(2).*b(1)];


>= R2019b:

    % Calculate cross product
c1 = conj(a(2).*b(3)-a(3).*b(2));
c2 = conj(a(3).*b(1)-a(1).*b(3));
c3 = conj(a(1).*b(2)-a(2).*b(1));

if iscolumn(a) && iscolumn(b)
c = [c1; c2; c3];
else
c = [c1, c2, c3];
end

Second one seems to be mathematically more correct. But if we follow this, toolbox would fail on older MATLAB versions.

Have to rewrite the function to support both :(.


In any case, just ignore the error, we will release new bundle soon with workaround.  

Corrigé

Just re-download and use 4.6.4.13348 version. 

I have just added support for "cross" from R2019b.